Testing of Small and Large Sign Support Systems FOIL Test Number: 92F038

Research and Development

Turner-Fairbank Highway Research Center
6300 Georgetown Pike
McLean, Virginia 22101-2296

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.

Technical Report Documentation Page

15. Supplementary Notes

Contracting Officer's Technical Representative (COTR) - Richard King, HSR-20
16. Abstract

This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at $60 \mathrm{mi} / \mathrm{h}(96.6 \mathrm{~km} / \mathrm{h})$, test 92 F 038 . The vehicle used for this test was a 1986 Honda Civic. The purpose of this test was to evaluate the high-speed safety performance of a triple legged steel $2.5-1 \mathrm{~b} / \mathrm{ft}(3.7-\mathrm{kg} / \mathrm{m})$, $8-\mathrm{in}(203.2-\mathrm{mm}) \mathrm{splice}$, u-channel sign support. The performance evaluation was based on the latest requirements for breakaway supports as specified in Volume 54, Number 3 of the Federal Register dated January 5, 1989. These criteria specify, in part, that the occupant change in velocity must be $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ or less, that the significant test article stub height remaining after impact be no more than 4 in (101.6 mm), and that there can be no occupant compartment intrusion. The test results indicate that the $2.5-1 \mathrm{~b} / \mathrm{ft}(3.7-\mathrm{kg} / \mathrm{m})$ u-channel sign support system meets all of the applicable safety criteria for the highspeed test in strong soil as specified by the FHWA.
17. Key words
Acceleration, occupant impact velocity,
strong soil, u-channel, vehicle, FOIL.

18. Distribution Statement

No restrictions. This document is available to the public through the National Technical Information Service Springfield, Virginia 22161

19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 19	22. Price

- 3 it is the symbol tor the Intornalional System of Units. Appropriate
(Ravised August 1992)
rounding shoutd be made to comply with Section 4 of ASTM E380

Table of Contents.

1. SCOPE 1
2. TEST MATRIX 1
3. VEHICLE 1
4. SIGN SUPPORT 1
5. TEST RESULTS - TEST $92 F 038$ 2
6. CONCLUSION 2
7. REFERENCES 15

List of Figures.

Figure No. Page

1. Sketch of small sign support 3
2. Sketch of small sign, splice detail 4
3. Test photographs during impact, test 92 FO 08 5
4. Summary of test 92 FO 0 6
5. Acceleration versus time, X-axis, test $92 F 038$ 7
6. Velocity versus time, X-axis, test $92 F 038$ 8
7. Force versus displacement, X-axis, test $92 F 038$ 9
8. Occupant velocity and relative displacement versus time, X-axis, test $92 F 038$ 10
9. Pretest photographs of test 92 F 038 11
10. Additional pretest photographs of test 92 F 038 12
11. Post-test photographs of test 92F038 13
12. Additional post-test photographs of test $92 F 038$ 14
List of Tables.
Table No.
13. Test matrix 1

1. SCOPE

This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at $60 \mathrm{mi} / \mathrm{h}(96 \mathrm{~km} / \mathrm{h})$, test 92 F 038. The vehicle used for this test was a 1986 Honda Civic. The purpose of this test was to evaluate the high-speed safety performance of the sign support system. The sign support was a triple-post $2.5-1 \mathrm{~b} / \mathrm{ft}(3.7-\mathrm{kg} / \mathrm{m})$ u-channel sign support with an 8-in (203.2-mm) splice-joint. The performance evaluation was based on the latest requirements for breakaway supports as specified in Volume 54, Number 3 of the Federal Register dated January 5, 1989. These criteria specify, in part, that the occupant change in velocity must be $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ or less, that the significant test article stub height remaining after impact be no more than 4 in (101.6 min), and that there can be no occupant compartment intrusion.

2. TEST MATRIX

The test was performed on a small sign support system. The test speed was $60 \mathrm{mi} / \mathrm{h}(96.6 \mathrm{~km} / \mathrm{h})$. The sign was buried in NCHRP Report Number 230, S-1 strong soil ${ }^{(1)}$. A summary of the test conditions is presented in table 1.

Table 1. Test matrix.							
Test Number	Test Date	Test Vehicle	Test Weight $(1 \mathrm{~b})$	Test Speed $(\mathrm{mi} / \mathrm{h})$	Test Article Description	Impact Location	
925038	$12-9-92$	'86 Honda Civic	1850 839 kg	60 $96.6 \mathrm{~km} / \mathrm{h}$	3 leg steel $2.5 \mathrm{lb} / \mathrm{ft}$	center	

3. VEHICLE

The test vehicle was a 1986 Honda Civic two door hatchback with a manual transmission. Prior to the test, the vehicles' fluids were drained and its inertial properties measured. The vehicle was stripped of certain components which made space for the installation of test equipment. The vehicle was ballasted with a data acquisitions system, transducers, a brake system and weight plates (if necessary) to bring its inertial weight to approximately 1850 lb (839 kg). The actual weight of the test vehicle was $1850 \mathrm{lb}(839 \mathrm{~kg}$). After ballasting, the vehicles' inertial properties were remeasured.

4. SIGN SUPPORT

The sign support system consisted of three $2.5-1 \mathrm{~b} / \mathrm{ft}(3.7-\mathrm{kg} / \mathrm{m})$ steel u-channel posts with a sign blank attached. Each post was constructed from two pieces of u-channel. One section, the stub, was $3 \mathrm{ft} 4 \mathrm{in}(1.02 \mathrm{~m})$ in length and the other section was $13 \mathrm{ft} 4 \mathrm{in}(4.1 \mathrm{~m})$ long. The two sections were overlapped 8 in (203.2 mm) and attached with two $3 / 8-\mathrm{in}(9.5-\mathrm{mm}$) diameter grade-2 bolts. Between the sections of u-channel were $5 / 8$ in (15.9 mm) long spacers (washers). The two pieces of u-channel were connected such that the upper post was behind the stub post. The three two-piece posts were assembled and attached to a $6-\mathrm{ft}$ by 6 -ft 3 -in ($1.8-\mathrm{m}$ by $1.9-\mathrm{m}$) aluminum sign blank such that the panel was $7 \mathrm{ft}(2.1 \mathrm{~m})$ above ground. The three legs were installed
$1.7 \mathrm{ft}(0.5 \mathrm{~m})$ apart. The whole sign support system was assembled and inserted $3 \mathrm{ft}(0.9 \mathrm{~m})$ in NCHRP $\mathrm{S}-1$ strong soil. The hole around the sign support was backfilled in 6 -in ($152.4-\mathrm{mm}$) lifts and compacted until the final grade was reached. Figure 1 and figure 2 are drawings of the sign support system.

5. TEST RESULTS - TEST $92 F 038$

The test vehicle was accelerated to $59.2 \mathrm{mi} / \mathrm{h}(86.8 \mathrm{ft} / \mathrm{s}(95.3 \mathrm{~km} / \mathrm{h})$) prior to impacting the sign support. The centerline of the test vehicle was aligned with the center sign post.

The bumper made contact with all three sign posts and began to collapse. The center and left post fail 0.004 s after initial contact. The three splice joints began to fail 0.002 s after the two posts failed. The last post failed 0.008 s into the event. Each of the posts failed at bumper height where initial contact was made. By 0.014 s all the splices had failed and the vehicle continued to pass through the sign system vaulting the sign upwards. The vehicle passed underneath the sign. The vehicle did not make further contact with the sign. The u-posts began to plow through the strong soil; however, the resistive force of the soil did not allow the posts to continue to plow through it. In addition, the speed and energy of the vehicle does not allow sufficient time for the posts to plow through the strong soil.

Damage to the vehicle consisted of minor damage to the bumper and grill and one broken head lamp. The center of the vehicle sustained the maximum crush because it is the softest area on the front end. There was little damage to the bumper, the recorded crush was inflicted on the header panel above the bumper. The center of the vehicle sustained a maximum crush of 1 -in (25.2 mm). The occupant compartment was intact after the test.

Damage to the sign system consisted of three broken u-channel posts and six fractured grade-2 bolts. The sign panel and stubs were in usable condition after the test. No sign components impaled the occupant compartment.

The occupant impact velocity using the $2-\mathrm{ft}$ ($0.6-\mathrm{m}$) flail space model outlined in NCHRP Report Number 230, was determined to be $5.0 \mathrm{ft} / \mathrm{s}(1.5 \mathrm{~m} / \mathrm{s})$. The occupant impact velocity was reached 0.497 s into the crash event. The ridedown acceleration was 0.6 g 's. The peak acceleration (300 Hz data) for the impact event was 26.0 g 's (peak force $48.1 \mathrm{kips}(214 \mathrm{kN})$). Because the contact between the sign system and the vehicle was less than the time required for an occupant to travel the $2-\mathrm{ft}(0.6-\mathrm{m})$ flail space, the vehicle change in velocity is equal to the occupant impact velocity and was calculated to be $5.0 \mathrm{ft} / \mathrm{s}(1.5 \mathrm{~m} / \mathrm{s})$. Photographs during the impact event are presented in figure 3. A summary of the impact conditions and the test results is presented in figure 4. Figures 5 through 8 are plots of data collected during the test. Pre- and post-test photographs of the vehicle and sign support system are presented in figures 9 through 12. Because the crush was insignificant, no vehicle crush sketch was included in this report.

6. CONCLUSION

The test results indicate that the small sign support system meets all of the applicable criteria for the high-speed test in strong soil. There was no occupant compartment intrusion and the stub remaining after the test was $4.0 \mathrm{in}(101.6 \mathrm{~mm})$ which is less than or equal to the $4-\mathrm{in}(101.6-\mathrm{mm})$ limit specified by the FHWA. The occupant impact velocity was $5.0 \mathrm{ft} / \mathrm{s}(1.5 \mathrm{~m} / \mathrm{s})$ which is less than or equal to the $16-\mathrm{ft} / \mathrm{s}(4.9-\mathrm{m} / \mathrm{s})$ limit specified by the FHWA.

Figure 1. Sketch of small sign support.

n
\vdots
0
0

0.156 s
Figure 3. Test photographs during impact, test 92 F038.
$1 \mathrm{in}=25.4 \mathrm{~mm}$
$1 \mathrm{ft}=0.305 \mathrm{~m}$
$1 \mathrm{lb}=0.454 \mathrm{~kg}$

Vehicle analysis:	Observed	Design/Limıt
Longitudinal:		
Occupant Deltav at 2 ft .	$5.0 \mathrm{ft} / \mathrm{s}$	$\leq 16 \mathrm{ft} / \mathrm{s}$
Ridedown Acceleration.	0.6 g 's	$15 / 20 \mathrm{~g}$'s
Lateral:		
Occupant Delta V at 1 ft .	.no contact	no spec
Ridedown Acceleration.	.no contact	no spec
Peak 50 msec acceleration		
Longitudinal.		2.1
Lateral		
Vehicle Damage (TAD)		$12-\mathrm{FC}-1$
Vehicle crush.		
Vehicle velocity change........................ $5.0 \mathrm{ft} / \mathrm{s}$		
Impact angle................................. 0 degrees		
Exit angle.................................... 0 degrees		
$1 \mathrm{ft} / \mathrm{s}=0.305 \mathrm{~m} / \mathrm{s}$	$\mathrm{mi} / \mathrm{h}=1.6$	$1 \mathrm{~km} / \mathrm{h}$

Figure 4. Summary of test 92F038.

TEST NO. 92F-038

Figure 5. Acceleration versus time, X-axis, test 92 F 038.

$(5 / 21) \times 210012 \wedge$

Figure 7. Force versus displacement, X-axis, test 92 F 038.

$1 \mathrm{ft}=0.305 \mathrm{~m}$
Figure 8. Occupant velocity and relative displacement versus time, X-axis, test 92 F038.
 x 数：

7. REFERENCES

(1) Jarvis D. Michie, Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances, National
Cooperative Highway Research Program Report Number 230, March 1981.

